Sumoylation-deficient Prdx6 gains protective function by amplifying enzymatic activity and stability and escapes oxidative stress-induced aberrant Sumoylation

نویسندگان

  • Bhavana Chhunchha
  • Eri Kubo
  • Nigar Fatma
  • Dhirendra P Singh
چکیده

Aberrant Sumoylation of protein(s) in response to oxidative stress or during aging is known to be involved in etiopathogenesis of many diseases. Upon oxidative stress, Peroxiredoxin (Prdx) 6 is aberrantly Sumoylated by Sumo1, resulting in loss of functions and cell death. We identified lysines (K) 122 and 142 as the major Sumo1 conjugation sites in Prdx6. Intriguingly, the mutant Prdx6 K122/142 R (arginine) gained protective efficacy, increasing in abundance and promoting glutathione (GSH) peroxidase and acidic calcium-independent phospholipase A2 (aiPLA2) activities. Using lens epithelial cells derived from targeted inactivation of Prdx6-/- gene and relative enzymatic and stability assays, we discovered dramatic increases in GSH-peroxidase (30%) and aiPLA2 (37%) activities and stability in the K122/142 R mutant, suggesting Sumo1 destabilized Prdx6 integrity. Prdx6-/-LECs with EGFP-Sumo1 transduced or co-expressed with mutant TAT-HA-Prdx6K122/142 R or pGFP-Prdx6K122/142 R were highly resistant to oxidative stress, demonstrating mutant protein escaped and interrupted the Prdx6 aberrant Sumoylation-mediated cell death pathway. Mutational analysis of functional sites showed that both peroxidase and PLA2 active sites were necessary for mutant Prdx6 function, and that Prdx6 phosphorylation (at T177 residue) was essential for optimum PLA2 activity. Our work reveals the involvement of oxidative stress-induced aberrant Sumoylation in dysregulation of Prdx6 function. Mutant Prdx6 at its Sumo1 sites escapes and abates this adverse process by maintaining its integrity and gaining function. We propose that the K122/142R mutant of Prdx6 in the form of a TAT-fusion protein may be an easily applicable intervention for pathobiology of cells related to aberrant Sumoylation signaling in aging or oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative stress–induced assembly of PML nuclear bodies controls sumoylation of partner proteins

The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, ...

متن کامل

SUMO under stress.

During the last decade, SUMOylation has emerged as a central regulatory post-translational modification in the control of the fate and function of proteins. However, how SUMOylation is regulated itself has just started to be delineated. It appears now that SUMO (small ubiquitin-related modifier) conjugation/deconjugation equilibrium is affected by various environmental stresses, including osmot...

متن کامل

SUMO-1 controls the protein stability and the biological function of phosducin.

Phosducin regulates Gbetagamma-stimulated signaling by binding to Gbetagamma subunits of heterotrimeric G-proteins. Control of phosducin activity by phosphorylation is well established. However, little is known about other mechanisms that may control phosducin activity. Here we report that phosducin is regulated at the posttranslational level by modification with the small ubiquitin-related mod...

متن کامل

Sumoylation modulates oxidative stress relevant to the viability and functionality of pancreatic beta cells.

Sumoylation is an evolutionarily conserved regulatory mechanism to play an important role in various cellular processes through modulation of protein localization, stability and functionality. Recent studies including ours have consistently demonstrated that sumoylation provides protection for cells against oxidative stress. Given that pancreatic beta cells are a vulnerable target of oxidative ...

متن کامل

Redox-sensitive TP53INP1 SUMOylation as an oxidative stress sensor to activate TP53

Oxidative stress-induced sumoylation of TP53INP1 (tumor protein p53-induced nuclear protein 1) is essential to enhance the TP53 response. Sumoylation of TP53INP1 on the K113 residue, which is mediated by protein inhibitor of activated STAT 3 (PIAS3) and chromobox homolog 4 (CBX4) and removed by SUMO1/sentrin specific peptidase (SENP1, 2 and 6), favors its interaction with TP53 in the nucleus an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017